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Behaviour of macroscopic rigid spheres in Poiseuille flow 
Part 2. Experimental results and interpretation 

By G. SEGREt AND A. SILBERBERG 
Weizmann Institute of Science, Rehovoth, Israel 

(Received 6 November 1961 and in revised form 16 March 1962) 

It is shown that a rigid sphere transported along in Poiseuille flow through a tube 
5s subject to radial forces which tend to carry it to a certain equilibrium position 
at about 0.6 tube radii from the axis, irrespective of the radial position at which 
the sphere first entered the tube. It is further shown that the trajectories of the 
particles are portions of one master trajectory and that the origin of the forces 
causing the radial displacements is in the inertia of the moving fluid. An analysis 
of the parameters determining the behaviour is presented and a phenomeno- 
logical description valid at low Reynolds numbers is arrived at in terms of 
appropriate reduced variables. These phenomena have already been described 
in a preliminary note (SegrB & Silberberg 1961). The present more complete 
analysis confirms the conclusions, but it appears that the dependence of the 
effects on the particle radius go with the third and not the fourth power as was 
then reported. 

It is also shown that the description of the phenomena becomes more com- 
plicated at tube Reynolds numbers above about 30. 

1. Introduction 
The occurrence of a ‘tubular pinch’ effect in laminar flow of suspensions of 

spheres through a tube has been reported in a preliminary note (Segr6 & Silber- 
berg 1961). From this i t  appears that particles are subject to radial displacements, 
outwards from the centre of the tube and inwards from its wall. There exists an 
equilibrium radial position at  about 0.6 tube radii from the axis to which the 
particles tend. The origin of these effects lies in the inertia of the fluid. 

Radial displacements of spherical particles in streaming suspensions have been 
suspected in the past in view of certain deviations from the ideal in the flow 
behaviour of such systems. In particular, viscosity experiments tend to give 
results which, depending on flow conditions, are lower than those calculated 
from the Einstein equation. Some observations of this kind have been termed 
cr-phenomena by Scott-Blair who recently (1958) gave a rather extensive review 
of anomalous viscosity behaviour of suspensions. 

More direct studies of particle displacements are also reported and studies of 
concentration changes go back to Poiseuille (1836) who in blood flow noticed a 
corpuscle-free region near the walls of the capillary. Perhaps the most elegant 

-f On leave from Cartiera Vita Mayer and Co., Milan, Italy. 
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observations of uneven distribution of erythrocytes in flowing blood are those of 
Taylor (1955). Taylor scanned the cross-section of the flow tube and observed a 
region of low absorbancy not only near the wall but also near the centre of the 
tube, provided the velocity of flow was large enough. These results which closely 
confirm ours were however given a different explanation by the author. In  the 
extensive review of the rheology of blood by Prey-Wyssling (1952, ch. VI), 
evidence is presented for corpuscle displacements mainly tending to show that 
the particles are driven towards the centre. The possibility that some dispersing 
action opposes this tendency is however hinted at mainly because the experi- 
mental results are not consistent with a tight packing of corpuscles in the centre. 
This point is also made in a discussion by Bayliss (1960, p. 29) on anomalous blood 
viscosity. 

Among studies with other systems in which particle displacements in flowing 
suspensions were observed or inferred one may mention in particular those of 
Tollert (1954) and Maude & Whitmore (1956). 

The more direct approach to the problem by way of observation of single 
particle motion is rather difficult and such studies are relatively few. The case 
most directly comparable with our experiments is to the best of our knowledge 
the investigation of Vejlens (1938) who used a square-cross-section flow tube with 
glass windows in which the trajectory of a rigid sphere released from near the wall 
could be observed photographically. He found that the particle moved away 
from the wall and that this effect increased rapidly with particle size. His 
results compare well with ours if we make allowance for the different flow 
conditions. 

Recently Goldsmith & Mason (1961) reported experiments on rigid spheres in 
Poiseuille flow where no sideward displacements were observed. Unfortunately 
they conducted their studies under conditions where no measurable effects are 
to be expected according to our results. 

While many authors mention the possibility of radial forces and advance 
qualitative reasons for their existence there are few thoroughgoing investigations. 
Moreover, all the arguments advanced are in support of a force directed radially 
inwards. 

A fundamental investigation into the nature of the problem is due to Simha 
(1936) who solved the case of a rigid sphere carried in an unbounded Poiseuille 
field of flow. His solution is based on the linearized Navier-Stokes equations, i.e. 
he deals only with creeping motion, and shows that under these circumstances 
there is no radially directed motion. It is clear therefore that the cause for side- 
ward particle displacements must be sought either in the neglected inertia terms 
of the equations of motion, or in the presence of the rigid walls, or in both. 

The case of a particle moving alongside a rigid wall was discussed for different 
conditions of flow by several authors (Lorentz 1907, p. 23; Vand 1948; Happel & 
Brenner 1958). From these results, which all refer to creeping motion, it appears, 
however, that despite the presence of the wall no sideward force acts on the 
particle. 

The first formal derivation of an inwardly directed lateral force based on 
inertia effects may be found in the use of the Kutta-Joukowsky formula made by 
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Tollert (1954) for particles sedimenting in the presence of walls. His treatment 
thus attributes the phenomenon to the Magnus effect. A rigorous consideration 
of the effect of inertial forces is due to Saffman (1956) who however treated only 
an unbounded Poiseuille field. The force found by Saffman is also directed inwards. 
The case of a spinning sphere dragged through a viscous fluid at  rest is treated by 
Rubinow & Keller (1961) using Stokes and Oseen expansions of the complete 
equations of motion. Also in this case a transverse force whose leading term is 
functionally identical with and in the same sense as the Magnus force is deduced. 

Summarizing it appears that the effect found by us can account for the experi- 
mental observations that have been made in various cases, and that the radial 
displacements are due to the inertia of the fluid. While purely inward motion has 
been made plausible by the above considerations no satisfactory analysis to 
explain the outward displacements from the centre has yet been advanced. 

2. Experiment 
An account of the apparatus and method has been given in Part 1 of this paper 

(SegrB & Silberberg 1962). The system investigated consisted of suspensions of 
polymethylmethacrylate spheres with a narrow distribution of diameters in 
media composed of mixtures of glycerol, 1,3-butanediol and water adjusted to 
match the density of the spheres, paaO = 1.178 g/cm3. The mean particle diameters 
were 2a = 0.32, 0.80, 1.21 and 1.71 mm. The viscosity of the fluid resulting from 
mixtures in different proportions of the components varied between 17 and 410 cP. 
The overall particle concentrations C, ranged from 0.33 to 4 particles per cm3. 

A fixed volume (660 cm3) of the suspension was made to flow through a vertical 
tube of inner radius R = 5.6 mm and the concentration a t  various points analysed 
by scanning the cross-section of the tube with two mutually perpendicular light 
beams.? The interruptions of the light beams by particles passing through them 
were transduced photoelectrically and these pulses counted and analysed as 
discussed in Part 1. From this analysis the number of particle passages Nh 
through the narrow common crossing-over region of the beams was calculated. 
The concentration distribution C(r,  z) ,  where r is the radial position and z is the 
co-ordinate along the tube axis, is then determined from Nh on the assumption 
that the particle velocity in the z-direction coincides with the velocity of the 
liquid in the Poiseuille field 

V = 2V,[l - ( r /R)2] .  

The distance I of the scanning section from the mouth of the tube could be varied 
from 6 to 120cm and the mean velocity of flow V, was adjustable within the 
range 5 to 90 cmlsec. 

Experiments were performed in series, each series representing a given suspen- 
sion (given 7, a, p and C,) made to flow under given conditions (given V,) and 
observed at  a given distance from the mouth of the tube (given I ) .  At least twenty 
measurements were made at each radial setting r and the average used to 
compute the Nh and C distributions for the series. 

7 In Segr6 & Silberberg (1961) the tube diameter was through an oversight given as 
11.6 mm. 
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3. Results 
Table 1 gives a summary of the conditions under which the various series of 

experiments were performed. The parameters listed are 2a, C,, 7, 1, Vm and the 
Reynolds number for the tube 

Re = pVm 2Rlq. 

The further quantities listed in the table will be explained later. 
Figures 1 to 3 show the Nh, and in most cases the C, distributions in terms of 

tube radial position r for some of the series mentioned in the table. Figure 4 shows 
the results for Nh plotted against r2 for those series where it was desirable to test 
whether Nh followed a parabolic law. 

4. Discussion of results 
(a )  Studies of flow near tube inlet 

As already pointed out we are assuming that the velocity profile in the flow tube 
is given by a parabolic law and that the velocity of the particles in the z-direction 
coincides with this velocity V(r )  = 2Vm[1 - (r/R)2] of the undisturbed liquid. Near 
the mouth of the tube, before any major sideward displacement of particles could 
have taken place, the concentration of particles should still be uniform and the 
‘hits’ number Nh, which is proportional to CV,  should thus be distributed para- 
bolically across the tube. (For a detailed discussion of the functional relation 
between Nh and CV reference should be made to Part 1.) Under suitable condi- 
tions therefore, a plot of Nh against r2 should be linear with an intercept on the r2 
axis given by R2. Such plots are shown in figure 4 and attention is drawn parti- 
cularly to series S. 7, S. 9 and S. 38 by which the validity of the above assumptions 
may be regarded as established for the cross-sections in question. 

Further down the tube where large deviations from the parabolic distribution 
of Nh are measured it is not possible apriori to decide what part, if any, is due to 
changes in velocity. In  view of the low Reynolds numbers employed (see table 1)  
and the fact that a laminar state was reached shortly below the tube mouth it is 
reasonable to assume, as we have done, that this laminar solution is stable right 
through the tube. Some more direct evidence for this will appear later. 

The other diagrams in figure 4 corresponding to series S. 13, S. 15, S. 17,s. 39 and 
S. 40 refer to observations at  tube cross-sections effectively farther away from the 
mouth (i.e. atlargerl-values, see later discussion) than the series mentioned above 
and deviations from the parabolic law may be already noticed above the experi- 
mental scatter. 

It is clear that fluid entering the mouth of the tube from the stirred storage 
container will not immediately settle into the laminar parabolic flow pattern. 
Even under the most ideal conditions a certain ‘inlet length’ A must be allowed 
for before the profile has been established. Following Smith (1960) we put 
A = 0.13RRe and find the values listed in table 1. In  most cases A is only a 
small fraction of the length I ,  and we have made no allowance for it in our calcu- 
lations. While the real transition region will probably exceed the ideal A in our 
experiments, the error remains negligible in comparison with other errors in cases 
of Reynolds numbers less than 30. 
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FIGURE 1. Distributions of 'hit '  numbers Nh and concentration C with respect to radial 
position T. *, Experimental results for Nh. The histogram is the derived concentration 
distribution. The curve gives N ,  reconstructed from histogram. For details on experi- 
mental conditions see table 1. N.B.  The N,-curves for S. 15 and S. 17 were derived from 
the concentration distribution of S. 13. 
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(b)  The development of the 'tubular pinch ' effect 

As has already been shown in Part 1 the distributions measured are independent 
of the overall particle concentration. This shows that we are dealing with a single 
particle phenomenon and that the concentration changes are generated by dis- 
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FIGURE 2. Distribution of 'hit '  numbers Nh and concentration C with respect to radial 
position T. 0 ,  Experimental results for Nh. The histogram is the derived concentration 
distribution. The curve gives Nh reconstructed from histogram. For details on experi- 
mental conditions see table 1. 
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placements whose size and direction are determined by the individual particle 
trajectory. 

Detailed comparisons of results in cases where only the particle concentration 
was changed are possible and the series S. 8 and S. 10, as well as S. 14, S. 16 
and S. 18, in figure 1, are examples of such cases. The ordinate scales for con- 
centration C in these diagrams have been adjusted in the ratio of the overall 
concentrations so that direct superpositions of the histograms can be made. 

r (mm) 

I , , ,  
0 10 20 30 0 10 20 30 0 10 20 30 

r2 (m2) 

FIGURE 4. Plot of ‘hit’ numbers Nh against r2. *, Experimental results for Nh. The lines 
are best-fit lines through theoretical intercepts on +axis. For details of experimental 
conditions see table 1. 

Another excellent illustration of the independence of particle movements was 
obtained when mixtures of particles of markedly different radii were studied. 
I n  table 2 we give the results of two such tests. The first two lines of data refer to 
cases of unmixed particles, series S. 9 and S. 10, corresponding to particles where 
2a = 0.8mm, and to series S. 41 and S.46 corresponding to particles where 
2a = 1-71mm. 

A mixture of 2 part./cm3 of the smaller and 0.5 part./cm3 of the larger size was 
then prepared and tested in series S. 47 and S. 48 under the same flow conditions 
as apply to the pair S. 9 and S. 41 and to the pair S. 10 and S. 46 respectively. 
A linear combination of the results for the unmixed systems, due allowance being 
made for different bulk concentration, agrees very well with the directly measured 
results. Note, moreover, that the distributions for the large and small particles 
differ considerably from each other. Particularly in the second superposition test 
the tubular pinch has almost completely developed in S. 46, while it is only barely 
visible in S. 10 (see figures 3 and 1). 

This linear addition of effects shows, moreover, that the presence of particles 
10 Fluid Mech. 14 
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T (mm) ... ... 0 1 2 3 3.5 4 5 

s. 9.f 41.7 39.2 33-6 27.6 24.7 20.3 6.8 
S. 41$ 43.5 56.5 58.5 58.0 52.0 40.0 9.8 

Linear combination11 63.5 67.4 62.8 56.6 50.7 40.3 11.7 
s. 478 58.0 63.0 65.5 57.6 52.5 38.0 12.0 

s. lot  25.0 24.0 25.0 36 45.5 31.0 0 
S. 46$ 0 0 5.2 74 67.0 67.0 0 

Linear combination// 25.0 24.0 27.6 73 79.0 64.5 0 
S. 48s 23.5 22.4 36.2 71 77.5 77.6 0 

.f Overall concentration of particles in this series: C ,  = 2 part./cm3. 
$ Overall concentration of particles in this series: Go = 1 part./cm3. 
§ Overall concentration of particles in this series: 2 part./cm3 of diameter 0.8 mm and 

/ ]  Sum of Nh from the fist line and 0*5N, from the second line. 
0.5 part./cm3 of diameter 1.71 mm. 

TABLE 2. Number of 'hits' Nh as a function of radial position. (Superposition tests with 
a mixture of particles of 0.80 and 1.71 mm diameter.) 

~~~ ~~ ~ ~~ ~ 

does not influence the average flow pattern of the fluid, and that this pattern 
maintains its character unchanged throughout our experiments. 

The development of the effect can be seen from series S. 39, S. 42 and S. 45 in 
figure 3 which represent observations carried out at  I = 6, 31 and 120cm 
respectively under identical flow conditions. While the concentration is still 
practically uniform a t  I = 6 cm, almost all particles have already collected at the 
equilibrium position 114 cm further down. Other comparisons at different cross- 
sectional levels when the flow conditions were the same all lead to the same 
conclusion, as will be seen by selecting cases from table 1 and studying the 
corresponding histograms in figures 1 to 3. A measure of the development of the 
effect is also obtained by observing the outer radial position r l im where the 
concentration goes to zero. We have listed the values of r l i m  in table 1. It will be 
seen that rIim rapidly approaches an asymptotic value. 

It is, moreover, possible to confirm the essential character of the effect, i.e. 
the tendency of all particles to reach the same radial position, simply by observing 
the motion of the flowing particles at  levels where the effect has developed com- 
pletely. In  these cases all particles are seen to move with practically identical 
velocity. For example, a direct analysis of the velocities of 30 particles chosen at  
random gave a dispersion about the mean of only 4 yo and the mean velocity 
agreed well with that to be expected for particles situated at the equilibrium 
radial position as measured in the scanning experiments. 

The gathering of all particles into a narrow annular region is also seen from 
observations in the collecting reservoir where in the absence of stirring a thin 
mantle of particles is observed to leave the tube and to follow the streamline 
pattern of the liquid. 

(c) Discussion of the particle trajectories 
(i) General considerations. In  view of the stability of the laminar flow pattern 

in the tube it is logical to assume that the velocity v of the particle is a function of 
radial position only and that a unique trajectory exists which tends asymptoti- 
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cally to the radial position r* at which the particles are seen to congregate. This 
implies that particles which enter the flow tube at an initial radial position ro 
travel along that part of the trajectory only which leads from ro to r*. The 
trajectory is composed of two branches and a particlewill travel along one or other 
of them depending on whether ro < r* or ro > r*. 

As already pointed out the z-component of the velocity is given by 

v, = dz/dt = V ( r )  = 3V,[1 - (r/R)2], 

v, = dr/dt = U(r) .  

(1) 

(2) 

U(0)  = 0. (3) 

(dz/dr)traieetory = V(r) /u(r )*  (4) 

and for the r component vr we now write 

For reasons of symmetry it follows, moreover, that 

The slope of the trajectory in the (r,  2)-plane is derived by dividing (1)  by (2), 

As we are dealing with stationary flow, conservation of particles demands that 

divcv = 0, 

a[rC(r, Z) U(r)]/ar + a[rC(r, x )  V(r)]/a~ = 0. 

where C = C(r ,  x )  is the particle concentration measured at position (r,  z) ,  i.e. 

( 5 )  

rCU = const. (6) 

From (5 ) ,  in view of the definitions of U and V ,  we deduce that 

along the trajectory. Equation (6) may be used to calculate C from some initial 
distribution provided U ( r )  is known. 

If, on the other hand, we want to derive U ( r )  from measurements of C(r,  z )  this 
cannot be done on the basis of (6) as the trajectory is then not known. Instead we 
may use 

which is easily deduced from equation (5 ) .  Our experimental results for C as a 
function of z are, however, not sufficiently closely spaced for aC/az to be deter- 
mined with any precision. A derivation of U ( r )  using equation (7) will have to 
await more detailed experiments. 

(ii) The concentration gradient along the tube axis. Information about the 
behaviour of U(r )  a t  small values of r is best derived from our data, using 

2 (y) = -- = const., 
r=O ~ ( 0 )  r=O 

which is based solely on equations (3), ( 5 )  and the independence of U and V from x .  
Plots of In C at r = 0 against tube position z should thus be linear. 

(iii) Formal characterization of the radial velocity. The radial velocity U(r )  may 
depend, in addition to r,  on the mean velocity of flow V,, the viscosity 7, and 

10-2 
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density p of the medium, the radius R of the tube, and the radius a of the particle. 
It is independent of z ,  as we have already pointed out. It may thus be repre- 
sented by U(r )  = U(P) = Vmh(a/R, P, Re), (9) 

where h is a function of the quantities alR, 

P = r/R, (10) 

and Re = (2pVmR/q) (11) 

(the tube Reynolds number), which are dimensionless variables formed from the 
parameters on which U is assumed to depend. 

From (8) we find 

= const., 

which, after integration, gives 

i.e. 

where the substitution Z = z -zo  has been made if zo marks the position of the 
mouth of the tube. 

(iv) Comparison with experiment. In  figure 5 we have plotted ln[C(O,Z)/Co] 
(taken from table 1) against the parameter ReZ/R. As is seen, the results for 
particle sizes 2a = 1.21 and 1.71mm group well along two straight lines, indi- 
cating that we may rewrite (12) as 

In [C(O, l)/Co] = - g(a/R) Re l/R (13) 

where, as shown, g is a function of (a/R) only. 
We may conclude therefore that U ,  and with it also the radial force F ,  is 

linearly proportional to Re. The origin of the effect in the inertial components of 
the flow is demonstrated by its dependence on Re. 

If we make the assumption that g(a/R) is a power series in a/R whose leading 
term is of degree n and whose further terms may be neglected we may write 

where k, is a numerical constant. Using the slopes of the two full lines in figure 5 
the power n defined above is found to be n = 2.84. The dotted line in figure 5 is 
drawn for the case 2a = 0.80 mm when n has the value found above. The two data 
points available for these particles check rather well with this line. 

The precision with which n can be determined depends greatly on the degree of 
monodispersity of the particle fractions. It can be shown that the error in n is 
proportional to the distribution width. In  our case, where the smaller particles 
were less monodisperse than the larger ones, n may have been underestimated by 
about 10 %. [In our preliminary note (Segr6 & Silberberg 1961) a value of n of the 
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order 4 was reported, due to a faulty estimate of the diameter of the largest 
particles. This is 1.71 mm instead of l.6mm as there reported. The values of L 
there should be corrected for this change in figure 2 of that note.] 

(v) General characterization of distribution in reduced co-ordinates. In  order to 
discuss the behaviour a t  other radial positions we make the assumption that 
a U(P)/aP may be expressed as a power series in P 

au(P)/aP = Ao+A,P+A,P2+ ..., (15) 

where A ,  = [aU(P)/aP],,, = V,Reg(a/R), (16) 

U(P) = PV,Reg(a/R) (1 + BIP + B2P2 + . ..), (17) 

as follows from equations (9), (12) and (13). Integration of (15) remembering (3) 
then leads to 

whereB, = Al/2A,, B, = A,/3A0, etc., mayingeneral be functions of the physical 
and geometrical parameters but are independent of r and z .  

\ 
\ 

1000 2000 3000 4000 5000 6000 
Re ZIR 

FIGURE 5 .  Plot of In [C(O, Z)/Cen] against Re Z/R for experiments a t  Reynolds numbers less 
than 30. Note grouping of experimental results into two straight lines for particle sizes 
2a = 1.71 mm and 2a = 1.21 mm. Broken line drawn for particle size 2a = 0.80 mm is 
calculated on the basis of equation (14). A, 2a = 0.80; W, 2a = 1.21; 0 ,  2a = 1.71. 

The vanishing of the radial force at  the position P *  = r*/R implies that the 
factor in square brackets in (17) has a root at  that point whose value will be 
determined by parameters B,, B,, etc. Since P *  has been found to be constant 
within the experimental error in measurements performed over a wide range of 
Reynolds numbers and for different particle dimensions it may be concluded that 
the B’s are numerical constants under these circumstances. 

Substitution of (1) and (17) into (4) followed by integration from a position 
(Po, zo) at the tube mouth to a position (P,, x )  leads to the following expression 

(1 - P 2 )  d P  
... ) ’  
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where L, = a(Pvm/r)  (4)” (19) 

results from (14) and is a dimensionless measure of the distance I from the tube 
mouth. It follows from (18) that a particle setting out at  the tube mouth from 
position Po will reach a uniquely defined position Pl at a distance L, down the tube. 

The set of points Po marking the co-ordinates of the particles at the tube mouth 
thus goes over into a uniquely defined corresponding set of points Pl at the 

S. 13 

FIQ~RE 0. Concentration distribution in tube in reduced co-ordinates. (a )  Theoretical 
model with quadratic force hypothesis. (b)  Experimental results. 

level L,. In  other words, the given distribution of particle concentration at  the 
tube mouth (uniform in our case) transforms into a uniquely defined distribution 
of concentration depending only on the choice of L,. The distributions measured 
for series characterized by different experimental circumstances but by the same 
L,-values should thus be identical. 

The plot of figure 7 has shown that n is about 3. Taking into account the limited 
precision of this determination and assuming that n is integral we have calcu- 
lated L, for n = 3 and listed it in table 1. In  addition, we have given the results 
for L, in the case n = 4. 

A three-dimensional array of the concentration distributions, for all series 
with Re < 30, in order of L3 is shown in figure 6 (b) .  As can be seen the distribu- 
tions fall into natural progressive order and clearly illustrate the development of 
the tubular pinch effect. 

How exactly distributions superimpose may be seen from figure 3 where in the 
case of two series of practically the same L-value, S. 43 and S. 44, for which the 
Reynolds numbers are 15-2 and 3-8 respectively, the results are plotted on the 
same co-ordinates. 
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For the concentration distribution C(r,  x )  we have calculated the positions F of 

and the second moment of this distribution about f ,  i.e. 

R 

0 0 
(Ar)2 =I (r - T ) 2  C d r / p  dr. 

Both f and Ar are given in table 1 for all series and Ar is plotted against L3 and L4 
in figure 7 for cases where Re < 30. 
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FIGURE 7. Concentration distribution parameters plotted against reduced tube lengths 
L,and L4, A, 2a = 0.80mm; m, 2a = 1.21mm; 0 ,  2a = 1.71mm. 

Note that the dotted line in figure 7 is the asymptotic level for Ar, as L, tends 
to zero, on the asumption of a uniform concentration C,, throughout the tube. If 
allowance is made for the fact that particles cannot approach the wall closer 
than their radius the level would be brought down by about 0.1 to 0.2mm. As 
Ar characterizes the distributions in a sensitive and objective manner the high 
measure of correlation shown may be taken to confirm our basic assumptions. 
The evidence of figure 7 is also in favour of using n = 3 in (14). 

It is obvious that the points rlim already defined trace the outer branch of the 
trajectory. In figure 8 we show these points plotted against L3. Note should be 
taken only of the full points as the others refer to high Reynolds numbers and 
will be discussed below. The full line corresponds to a theoretical model and 
neglects the restriction of finite particle dimensions a t  the tube wall. The devia- 
tions from this line at  low L-values are due to that. Among themselves the points 
correlate well in these co-ordinates, but in this case the correlation would even 
be improved if plotted against L4. 
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( d )  Deviation at larger Reynolds number 
When experiments were performed at larger Reynolds numbers, deviations from 
the above picture were observed. The general tendency was to blur the sharpness 
of the tubular pinch, i.e. to increase the spread Ar of the distribution, to decrease 
the width of the particle-free region near the wall, i.e. to increase the value of rlim 

which marks this position, and to cause the concentration at  the centre to 
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4 

La 

5 
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5 

E 

m 
m u  

0 

0 

FIGURE 8. Plot of outer edge rli, of concentration distribution against reduced tube 
length L,. The points are experimental results. The curve is derived from the quadratic 
force model. A ,  2a = 0.80, Re < 30; m ,  2a = 1.21, Re < 30; 0 ,  2a = 1.71, Re < 30; 
0 , 3 0 < R e < 1 0 0 ;  0 , 1 0 O < R e .  a i s i n m m .  

decrease more slowly than expected from equation (13) (see table 1 and figure 8, 
open points). Whereas the points at Reynolds numbers below 30 fall well within 
the consistency framework established in the previous section, results obtained 
at high Reynolds numbers deviate from this picture in systematic fashion beyond 
the possibility of experimental error. 

Although the Reynolds numbers cited are relatively large, laminar flow patterns 
would still be expected in most cases, a t  any rate for the particle-free liquid. To 
what extent any turbulence which enters the mouth of the tube is carried along 
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and to what extent the presence of particles may cause disturbance is hard to 
evaluate. Moreover the inlet length A in some cases approaches or even exceeds 
the l-value. 

On the other hand, a ‘tubular pinch’ does develop, at least qualitatively, and 
only at  really large Reynolds numbers when turbulence is surely present is the 
effect almost completely blurred out (as in the case for series S. 1-S. 6, S. 34 and 

The origin of these deviations even under laminar conditions are not hard to 
understand. First of all the force P is a power series in Re. This means that the 
B’s in equation (17) will depend on Re when Re is large enough and that the 
solution r* for the equilibrium position becomes a function of Re, as is indeed 
observed. 

On the other hand the general solution of the problem remains expressible as 
a function of the non-dimensional combinations Re, alR and IIR so that the same 
distribution should arise for given a / R  and IIR in whatsoever a manner a given 
value of the Reynolds number is obtained (by a different choice of velocity and 
viscosity). An illustration of this is provided by series S. 23 and S. 25 in figure 2. 

5.35). 

( e )  Effects at higher concentrations 
As already pointed out in Part 1 a concentration dependence of the results may 
be expected to appear at  concentrations not much above those employed. This is 
particularly true for those situations where the tubular pinch has built up high 
local concentrations. That inter-particle interactions occur in these cases is 
shown by the observation that groups of particles moving at the position of the 
peak generally tend to arrange themselves into linear, regularly spaced rows in 
the direction of flow. The gap between particles in these rows is equal to about one 
particle diameter. The build up of these ‘necklaces’ has been followed visually 
and clear cases of ‘capture’ of spheres at  the ends of the rows were observed. 
Often two necklaces which are sufficiently close to each other rearrange them- 
selves into one large linear array. If the end particles are not initially at  their 
proper distance apart they have been observed to rock themselves into the 
appropriate equilibrium position. 

Where particles moving along colliding paths come into contact the dumbbell 
formation described by Manley & Mason (1952) could sometimes be observed. 

These phenomena are here described for their intrinsic interest but were not 
followed up systematically. 

5. Theoretical implications of results 
The possibility of representing our results uniquely in a framework of reduced 

co-ordinates L, and P may be taken as justification for the basic assumptions 
underlying our derivation of these variables. These assumptions were, primarily, 
the origin of the radial force in the inertia of the fluid and the independence of the 
particle velocity of position along the tube axis. The occurrence of the ‘tubular 
pinch’ a t  a fixed value P* = 0.63 confirms, moreover, that the coefficients B in 
(17) are numerical constants which are not all zero. 
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If we consider as the simplest model, compatible with these conclusions, the 

we can introduce (17) into (6) and determine the values of C along the trajectory. 
Equation (18) thus enables the concentration profile to be plotted for any given 
value of L,. In  figure 6 (a )  we show the results of such a calculation and note that 
they compare well with the experimental profiles given in figure 6 ( b ) .  A quadratic 
dependence of the force on radial position is thus shown to be a reasonable 
working hypothesis. 

case B,j = 0 (ia 2), B, = - 1/P*, 

3 

=, 4 

5 

P 
0.2 0.4 0.6 0.8 

FIGURE 9. Trajectories for quadratic force model in reduced tube co-ordinates. 

Figure 9 gives a plot of the trajectories originating at  different initial radial 
positions in the case of this model. The extreme trajectory is plotted also in 
figure 8 for comparison with the experimental rlim values. 

At higher Reynolds numbers, this model breaks down as already pointed out. 
Note, moreover, that an increase in a/R must also eventually bring about devia- 
tions in behaviour. The two a / R  values from which practically all the comparisons 
arise are obviously insufficient to establish the functional dependence on particle 
dimensions. In  fact, if we are already examining a region where deviations of the 
type discussed above may play a role, the assumption (14) would be inadequate 
and the precise meaning of the n-value derived would be in doubt. 
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Theoretical reasons according to which n should be 4 will now be given. If we 
follow Tollert (1954) and attribute the effect to a Magnus force and use the Kutta- 
Joukowsky formula, or if we take the result of Rubinow & Keller (1961) for a 
spinning sphere in a viscous fluid we are led to an expression in which the force is 
proportional to the vector product of the relative velocity Vrel. of sphere and 
fluid and the angular velocity Q of the spheres. 

For these magnitudes we can turn to the solutions found by Simha (1936) in his 
creeping-motion approximation already quoted: 

and 

If we approximate the sphere by acylinder of length 2a in the Kutta-Joukowsky 
formula and introduce the Simha velocities we find 

where kK-J is a numerical constant. The use of the Rubinow & Keller expression 
leads to the same result but the numerical constant kR-K is different. 

Ic,, b - K  ks 6nk4 
- 33.5 - 8.4 - 64.3 87 

TABLE 3. Numerical constant in radial force expression 

Also the treatment of Saffman (1956) gives an expression for the force of the 
above type but with still another numerical constant Ic,. We have listed the 
values of these constants in table 3. On the other hand, use of the Stokes resistance 
formula and equations (14 )  and (17 )  gives 

(23) P(r)  = 6;rr7~,JV~pa?Z+~/R~] ~ [ 1 +  B, ( r /R)  + . . . I .  
It is clear therefore that the theoretical deductions can be made to agree with the 
leading term in equation (23) ,  as far as functional dependence on a is concerned, 
when putting n = 4.  Note, however, that while kK-J, kR-= and ks are all negative 
6nk, is positive. The existence of the ‘tubular pinch’ effect thus demands a force 
opposite in direction to the theoretical expectations in the central region of the 
tube. 

Unfortunately none of the treatments leading to the result (32 )  are exactly 
applicable to the circumstances of our case. The Kutta-Joukowsky formula has 
been derived in two dimensions for the potential flow of an ideal liquid in steady 
motion past a rotating infinite cylinder, and while the Rubinow & Keller treat- 
ment considers the case, closer to ours, of a spinning sphere in a viscous fluid in 
steady flow the introduction of the Simha velocities into either of these expres- 
sions in justifiable only on very formal grounds. Saffman, by a method of succes- 
sive iteration, approximates the solution of the Navier-Stokes equations for the 
case of a sphere carried along in an infinite Poiseuille field of flow. His treatment 
is thus an extension of the Simha solution and may be regarded as most closely 
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comparable with our case. The absence of walls in his treatment and possible 
doubts about the convergence of the method may be seen as the only sources for 
the discrepancy in the value and sign of the numerical constant. On the other 
hand, the functional dependence on the physical and geometrical parameters of 
the leading term in Saffman’s result is not likely to change by improvements in 
the calculation. 

An explanation of why the exponent n does not turn out to be 4 thus has to take 
account of the walls and the reaction which the particle experiences in their 
presence. It is known, for instance, from treatments based on the linearized 
Navier-Stokes equations, that the drag on spherical particles moving parallel 
to a rigid wall deviates from the Stokes resistance by a term linear in particle 
radius (Happel & Brenner 1958). If the effective relative velocity between 
particle and liquid were increased by such an additional term its magnitude would 
be proprotional to u and not to a2 as in the Simha slip velocity, equation (21). The 
use of such a relative velocity in the Rubinow & Keller expression, for example, 
would lead to an equation for the transverse velocity proportional in its leading 
term to the third rather than the fourth power of (a/R).  The sign of the radial 
velocity would however be left unchanged. The presence of the walls is anyhow 
a cardinal feature of this system and no treatment which does not explicitly 
consider inertia effects in their presence can hope to be adequate. 

A further insight into the nature of the effect may perhaps be obtained, 
experimentally, by adding a constant relative velocity component to the particle 
in the z-direction, an effect which could be realized by a density difference between 
particle and fluid causing a steady rate of sedimentation in the vertically placed 
flow tube. 

Our results pose an interesting question about the applicability of the criterion 
of minimum energy dissipation which many authors following Jeffery (1922) 
regard as determining the sign of the radial force. The distribution arrived at in 
our case clearly contravenes this criterion. 

The high dependence of the effects on particle dimension makes it worth 
while to examine the possibility of exploiting the phenomenon for the fractiona- 
tion of mixtures. It is interesting that such an idea has been applied recently by 
Steenberg & Wahren (1960) to separate fibre fines from pulp suspensions. 

It should be stressed, however, that the effect was established only for rigid 
spherical particles at relatively low concentration. The features which charac- 
terize the behaviour of concentrated suspensions of non-spherical, deformable 
particles, as in the case of fibres and of blood, may not necessarily follow from the 
observations here recorded. Furthermore, cases where Brownian motion could 
play a role are of course excluded from these considerations. 

Thanks are expressed to Cartiera Vita Mayer and Go., Milan, who supported 
the extensive stay of one of us (G. S.) at  the Weizmann Institute of Science. 
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